

Today's Speakers

- David Hair
 Environmental Engineer
 US Environmental Protection Agency
 Washington, DC
- Greg Currey
 Environmental Engineer

 Tetra Tech, Incorporated
 Fairfax, Virginia

WORELS Part II-2

Components of Water Quality Standards

Components of water quality standards include:

- Designated uses [§131.10]
- Water quality criteria [§131.11]
- Antidegradation policy [§131.12]
- General policies [§131.13] (optional)

WQS Implementation Procedures

- Water quality standards and their implementing procedures (including NPDES requirements) specify methods for determining the need for WQBELs and for calculating WQBELs that ensure that standards are attained.
- Where can these methods be found?
 - state regulations
 - state water quality management plans
 - state guidance
 - EPA's Technical Support Document

WQBELs Part II-5

Characterize the Effluent and Receiving Water

Step 1: Identify Pollutants of Concern

Step 2: Determine Whether Consideration of Dilution and Mixing is Allowed by WQS

Step 3: Select an Approach to Model Effluent and Receiving Water Interaction

Step 4: Identify Critical Conditions for Effluent and Receiving Water Modeling

Step 5: Establish Appropriate Dilution Allowance or Mixing Zone for Each Pollutant of Concern

Step 1: Identify Pollutants of Concern

- Pollutants of concern are pollutants:
 - With an applicable TBEL
 - With a WLA from a TMDL or watershed analysis

Total Maximum Daily Load (TMDL)

- CWA section 303(d)(1)
 - requires states, territories, and tribes to identify waters that will not achieve water quality standards after implementation of technology-based limitations
 - requires ranking of identified waters based on severity of pollution and uses
 - requires TMDL for priority waters

WQBELs Part II-9

Total Maximum Daily Load (TMDL) (Continued)

- Defined as the amount of a pollutant that may be discharged into a water body with the water body still meeting water quality standards
- Used as a tool for implementing water quality standards

Watershed Analysis

- Even where a TMDL is not required, a watershed analysis might consider all the sources of a pollutant or stressor contributing to the waterbody
- Like a TMDL, a watershed analysis could be used to:
 - identify point sources that need WQBELs
 - determine appropriate WLAs for those point sources

Step 1: Identify Pollutants of Concern

- Pollutants of concern are pollutants:
 - With an applicable TBEL
 - With a WLA from a TMDL or watershed analysis
 - Identified as needing WQBELs in the previous permit

WQBELs Part II-13

Step 1: Identify Pollutants of Concern

- Pollutants of concern are pollutants:
 - With an applicable TBEL
 - With a WLA from a TMDL or watershed analysis
 - Identified as needing WQBELs in the previous permit
 - Identified as present in the effluent through monitoring

Step 1: Identify Pollutants of Concern Pollutants of concern are pollutants:

- With an applicable TBEL
- With a WLA from a TMDL or watershed analysis
- Identified as needing WQBELs in the previous permit
- Identified as present in the effluent through monitoring
- Otherwise expected to be present in the discharge

Step 2: Dilution and Mixing Zones in WQS

- Water quality standards:
 - generally allow dilution and mixing zones in applying water quality criteria
 - specify situations in which dilution and mixing zones may not be used

Step 3: Select Modeling Approach

Where dilution and mixing and the interaction of the effluent and receiving water are considered, there are two basic modeling techniques:

- Dynamic modeling
- Steady-state modeling

WQBELs Part II-23

Dynamic Modeling

- Accounts for variability of model inputs
- Projects probability distributions rather than a single value based on critical conditions
- Data intensive and more complex than steady-state modeling

WORELS Part II-2

Steady-State Modeling

- Predicts the impact of the effluent on the receiving water for a single set of conditions
- Assumes critical conditions for flow, pollutant concentrations, and environmental effects
- If criteria are not exceeded under critical conditions, the discharge should not cause criteria to be exceeded under other conditions

WQBELs Part II-25

Characterize the Effluent and Receiving Water

Step 1: Identify Pollutants of Concern

Step 2: Determine Whether Consideration of Dilution and Mixing is Allowed by WQS

Step 3: Select an Approach to Model Effluent and Receiving Water Interaction

Step 4: Identify Critical Conditions for Effluent and Receiving Water Modeling

Step 5: Establish Appropriate Dilution Allowance or Mixing Zone for Each Pollutant of Concern

Step 4: Identify Critical Conditions

- Effluent critical conditions:
 - Effluent flow
 - Effluent pollutant concentrations (pollutants of concern)
- Receiving water critical conditions:

Receiving water flow (if applicable)

- Background pollutant concentrations (pollutants of concern)
- Other receiving water characteristics (e.g., temperature, pH, reaction rates)

WQBELs Part II-27

Characterize the Effluent and Receiving Water

Step 1: Identify Pollutants of Concern

Step 2: Determine Whether Consideration of Dilution and Mixing is Allowed by WQS

Step 3: Select an Approach to Model Effluent and Receiving Water Interaction

Step 4: Identify Critical Conditions for Effluent and Receiving Water Modeling

Step 5: Establish Appropriate Dilution Allowance or Mixing Zone for Each Pollutant of Concern

NPDES

- What type of mixing occurs under critical conditions?
 - rapid and complete mixing
 - incomplete mixing

NPDES

WQBELs Part II-29

Step 5: Establish Dilution Allowance or Mixing Zone

What is rapid and complete mixing?

- Rapid and complete mixing occurs when lateral variation in concentration in the direct vicinity of the outfall is small
- Rapid and complete mixing occurs in rivers and streams under certain conditions
 - assumed
 - demonstrated

What is the allowable dilution when there is rapid and complete mixing in a river or stream?

- Water quality standards could allow as much as 100 percent of the critical low flow as a dilution allowance when there is rapid and complete mixing
- Some water quality standards might apply a factor of safety and allow only a portion of the critical low flow even where there is rapid and complete mixing

WQBELs Part II-31

Step 5: Establish Dilution Allowance or Mixing Zone

What is incomplete mixing?

- Where rapid and complete mixing cannot be assumed or demonstrated, there is incomplete mixing
- Where there is incomplete mixing, a mixing analysis will be required to understand how the effluent and receiving water mix

WORELs Part II-32

What is the allowable dilution when there is incomplete mixing?

 Water quality standards might allow a permit writer to consider a limited dilution allowance or a regulatory mixing zone under critical conditions where there is incomplete mixing

WQBELs Part II-35

Step 5: Establish Dilution Allowance or Mixing Zone

- What is a regulatory mixing zone?
 - A regulatory mixing zone is a limited area or volume of water where initial dilution of a discharge takes place and within which the water quality standards allow certain water quality criteria to be exceeded

WORELS Part II-36

- Common Constraints on Mixing Zone Size
 - may not impair integrity of the water body
 - no significant health risks
 - no lethality to passing organisms
- Other Considerations
 - multiple point and nonpoint sources
 - potential for overlapping mixing zones

WQBELs Part II-39

Feedback and Other Presentations

Questions or comments?

npdeswebtraining@tetratech.com

Join us for other online presentations on NPDES Permitting

www.epa.gov/npdes/training

